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ABSTRACT

We give a bound on the distance between an arbitrary point and the solution set of a

monotone linear complementarity problem in terms of a condition constant which depends

on the problem data only and a residual function of the violations of the complementarity

problem conditions by the point considered. When the point satisfies the linear inequalities

of the complementarity problem, the residual consists of the complementarity condition

x(Mx + q) plus its square root: (r(Mx + q)) This latter term is essential and without
which the error bound cannot hold. -We also show that another natural residual that has

been employed to bound errors for strictly monotone linear complementarity problems,
fails to bound errors for the monotevie case considered here.
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SIGNIFICANCE AND EXPLANATION

The monotone linear complementarity problem provides a unified framework for many

fundamental mathematical programming problems such as linear and quadratic programs

and bimatrix games. In this work we provide error bounds for points, which may not

satisfy the conditions of the problem, in terms of the amounts of the violations of these

conditions.

The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the authors of this report.
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Error Bounds for Monotone

Linear Complementarity Problems

0. L. Mangasarian & T.-H. Shiau

1. Introduction

Consider the monotone linear complementarity problem [2] of finding an x in the

n-dimensional real space R" such that

(1.1) Mx + q 0, x > 0, x(Mx + q)= 0

where M is an n x n positive semidefinite real matrix and q is in R". Suppose that the

problem has a nonempty solution set S. The question we wish to address in this work is

the following. Given an arbitrary point x in Rn which violates one or all three conditions of

(1.1), how close is x to 9 in terms of its violations of the conditions (1.1)? More specifically

we are interested in a measure of the distance between x and S in terms of the residual

vector

(1.2) ((-Mx - q)+, (-x)+, x(Mx + q)1)

where ((-x)+)i = max {0,-x,}, i = 1 ... ,n. Note that the residual vector vanishes if and

only if x is in the solution set S. A principal result, Theorem 2.7 below, shows that for each

x in R" there exists an 2(x) in S such that the ac -norm distance Itx -±(x) joc, is bounded

by a condition constant r2(M, q) (dependent on M and q only) times a positive function of

the residual vector (1.2) which vanishes if and only if the residual vector (1.2) is zero. The

condition constant T2(M, q) plays the same role for the monotone linear complementarity

problem (1.1) as does IA-l for a nonsingular n x n real matrix in bounding the distance

-4, between an arbitrary point x in R" and the exact solution ± A-b to Ai b,

by the residual vector Ax - b as follows

lix - 111 < IA-1III lAx - bIl

Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This
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Theorem 2.7 simplifies considerably to Corollary 2.8 if the point x in R' is feasible, that

is it satisfies the first two inequalities of (1.1), in which case the error Ix - ±(x)'l is

bounded by r2 (M, q) times the residual x(Mx q)-- (x(Mx + q))"i. Example 2.9 shows

that the term (x(Mx - q)) 1 2 is an essential part of the residual, without which the error

Sx - r(x),) cannot be bounded. Theorem 2.11 and Corollary 2.12 give bounds on the

*- relative error .:x - i(z): ,/ .(x)Ko in terms of the condition number T2 (M, q)- IM',A/o

times a relative residual function.

Pang has given error bounds for nonlinear complementarity problems [8] and linearly

constrained variational inequalities 797. When applied to the linear complementarity prob-

leni (1.1) Pang requires in effect 8, Lemma 2j that the matrix M be positive definite,

whereas our results merely require that. M be positive semidefinite. Although Pang's
natural residual 8, Lemma 2!

n

(1.3) ( > (min {x, M,zx+ q,}))/2

1=lI

is simpler than ours, we show by means of Example 2.10 that this residual cannot be used

as an error measure for the positive sernidefinite case under consideration in this paper.

* A brief word about notation and some basic concepts employed. For a vector x in the
n-dimensional real space R', x and x- will denote the vectors in R" with components

x x, and (x.), max {x,, 0}, i 1,...,n respectively. For a norm rIlz on

* R'. x , will denote the dual norm 3.7i on R". that is I x,, :. max xy, where xy

denotes the scalar production y x,y,. The generalized Cauchy-Schwarz inequality xyl <
1=1

x ,,. y, .,q, for x and y in R', follows immediately from this definition of the dual norm.
n

For I - p. q c 3c. and 1, the p-norm (Z xi.) ' and the q-norm are dual
P q

norms on R n !7. If .• is a norm on R". we shall, with a slight abuse of notation, let

also denote the corresponding norm on R' for m = n. For an m x n real matrix A

signified by A ": R'". A, denotes the ith row. A., denotes the jth column. A/ := At 1,.

- and A., A.j,.-j. where I {1. m} and J c {1n.n. p.4 , denotes the matrix norm

7 subordinate to the vector norm :, that is IAj!p& max IjAxlp. The consistency

condition Ax! <i A - x.- follows immediately from this definition of a matrix norm.

A monotonic norm on R' is any norm on R n such that for a, b in R', jja!L < ,lbK

2
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whenever !a < k or equivalently if ja 11 l13, p. 471. The p-norm for P 1 is

monotonic 7. A vector of ones in any real space will be denoted by e. The identity

matrix of any order will be denoted by 1. The nonnegative orthant in RI will be denoted

by R~.
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2. Principal Results

Throughout this paper M will denote an n x n real matrix, 9 a point in R', (M, q)

will denote the linear complementarity problem (1.1), and

(2.1) M + M1
2

(2.2) S S(M, q) fjM zM+ q 0z O>}0

(2.3) .9 S(M, q) {xlMx + 9 0, x >O, x(Mx +q) 0)

It is well known [2] that the solution set .9 is nonempty if and only if he feasible set S

is nonempty, provided that M is positive semidefinite. We begin with ,ome preliminary

results.

2.1 Lemma (Adler & Gale JIj: Polyhedrality of the solution set of (M, q).Let M be

positive semidefinite and let 2 E S.Then

S x{jMx +- q > 0, x > 0, x(212 + q) + q1 < 0, A(x -2±) =0}

P roof (x -)(Mx 9 - (M± +q) (x - )M (x -2)

Hence

X(Mz + q) ±(Mz + q) + X(M± + q) +~ (z - t)M(x - t

Since for xr E S, each quantity on the right hand side of the last equation is nonnegative it

follows that

S {X C SIX(Mz + q) O}

{xIMx + q 0, X > 0, ±(Mx + q) 4- (M± + q) < 0, (z - ±)M(x -. t) = O

{x]Mx + q 0, x > 0, x (2f± + q) + q-+ < 0, Af(x - t) =0)

The last equality follows from the equivalence of zMz 0 and M~z =0 for a positive

semidefinite matrix, since 2M4z, the gradient of zMz, must vanish when zMz =0.I

2.2 Lemma Let M E Rflfn be symmetric positive semidefinite. Then 4z 0

1 1 ,'2X 0.

4



Proof W I1 2 z 0 : M x = 0 => .f/ 2 ,1/2X = 0 X) x. 1/2M/2X = 0 =>j f A1/2X112

0 = f1/2 X = 0.ii

Lemmas 2.1 and 2.2 combined give the following.

2.3 Lemma Let M be positive semidefinite and let i E . Then

(2.4) = {xMx q > 0, x > 0, x(2. + q) + q± < 0, )f1/ 2 (x-±) = 0)

By using the polyhedral characterization (2.4) and the condition number result for

linear inequalities and equalities of either 4 or [6] we are able to obtain a preliminary

bound on the distance between any point in Rn and the solution set S 3f (M, q).

2.4 Proposition Let M be positive semidefinite and let 2 E S. For each x in R1 there

exists an t(x) in S which is independent of t such that

i - ±(x) ~ ~ro(M, q), (-Mx - q, -x, x(2,41 + q) + q2) +, A 1 / 2 (X

where I ,q is some norm on R 3" + ', 11" ip * is its dual norm and

[(uM + v + zA1"/ 2 - (22Af + q)[t = 1,

(U,v, C) >0

(2.5) r( ,q):: inf sup i1u,v,z,Voll* Rows of 'c r/d Mo
±ES (u,v,z, ) cr d

R" ' 2 M+q
nonzero elements of (u, v, z, ) are lin. in-

dep.

Proof Follows by the application of Theorem 2.2' 6] to 8 as defined by (2.4). i

We need two more lemmas before stating our principal results.

2.5 Lemma Let ± S. Then for each x c R n

- ±)112 < x(Mx + q) + Il(-Mx q, -x)+[t 1± M± + qljo*

where " is some norm on R2 n and " [* is its dual norm.

5



* Proof

1tfl~v'/ 2 ( 2 - (x - x)M(x - x) x(Mx - q) + e(-Mx - q) + (-x)(Mt + q)

< x(Mx + q) + ±(-Mx - q), + (-x)+(Mt + q)

< x(Mx + q) + 1(-Mx - q, -x)+Io" [[, Mi + q[jo*. l

2.6 Lemma Let • E S and let M be positive semidefinite. Then for any x C R"

(x(Mx- + q) -+ x(Mt + q))+ < (x(Mx +q))+

* Proof (±(Mx + q) + x(M± + q))+

; = (x(Af x + q) - (x - x) A /(x - x))+

< (x(Mx + q)) . I

We are now ready for our principal results.

2.7 Theorem (Absolute error bound for approximate solutions of monotone linear

complementarity problems) Let M be positive semidefinite and let S $ €. For each x in

R' there exists an x(x) in S such that

X- X (X) < r2(M, q) [(x(Mx + q), -Mx - q, -x)+ 112
(2.6)

+ (x(Mx + q) + ajIj(-Mx - q, -x) l)1/2]

where r2 (M. q) is defined by (2.5), j. I is some norm on R 2 n and ao is defined by

(2.7) Or3 =op(M, q) min lix. M! + q[J1*

Proof By 12; .S - o since S # €. Let x C S. Then by Proposition 2.4 above, for each x

in R" there exists an t(x) in S which is independent of ± such that

.r r(x) r2 (M, q)Ij((-Mx - q, -x, x(M± 4- q) 4 ±(Mx + q))., 1'/2 (x - 2

2r,(M. q)l(-Mx - q, x, x(Mx # q)), 12

(x(Mx q) -i f( -Mx q, -x) x , ',. Mr - q'I*), /21

(By Lemmas 2.6. 2.5 and

monotonicty of the 2-norm 131.)

6
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Hence taking the infimum of the right side over all i in S we get

- ±(x)loc _ r2 (M, q) 'I (x(Mx + q), -Mx - q, -x)- 2 -

+ (x(Mx + q) o [(-MX -q, -x)+110) 1/2] .

When x is in S, Theorem 2.7 simplifies to the following.

2.8 Corollary (Absolute error bounds for feasible approximate solutions of monotonc

complementarity problems) Let M be positive semidefintie and let S ' 0. For each x in S

there exists an t(x) in S such that

(2.8) '1x - t (x)' < r2 (M, q)[(x(Mx + q)) + (x(Mx + q))'/ 2 .

where r2 (M, q) is defined by (2.5).

The following example shows that the residual term (x(Mx+q))1"2 in (2.8) is essential

and cannot be dispensed with.

2.9 Example
M= 1 1q [01 g to)

S { E R1x 2 0 X2 X1}.-

Let X(E) [2 e S for O<"<1. Then

lI :(C) - O11"o, 6
-i()O~- -*00 as E -O.

x(E)(Mx() + q) 2E2 + E4

However

l_____ )__-____,__ _ - __--_ _ __ as E -- 0.

x(E)(Mx(6) + q) + x(E)(Mx(e) q 1/2 2E2 + + (2C2 + E4)/ 2  2

In :8. Lemma 2, Pang uses the natural residual (1.3) as an error measure for the

positive definite linear complementarity problem. It is easy to show, by considering for

each component i the two cases of x, > M,x - q, and x, < Mx + q,, that the residual (1.3)

is equivalent to Ix - (x - (Mx + q)), :!2. The following example shows that (1.3) cannot

7......,.,........................... . ,.,.-



be used as a measure of error for the positive semidefinite case under consideration in this

work.

2.10 Example

M~ (0 )(-2
The unique solution of this problem is ± i ) Letting x(t) (,we get that for

X(t) - (x(t) - (Mx(t) +q))+ -,)+) (
I() ( - ( -t)o0

X(t) - 0 1

Hence flx(t) - ±112 t t - oo as t -- 00.

IIx(t) - (x(t) - (Mx(t) + q))+112

Consequently the residual (1.3) cannot be used as an error bound for the positive semidef-

inite case.

By noting that for ±(x) E S

- (M±(X))+ < IMI(X)

I(-q)+ 1o < IIMJI (x)IIo < fltI 0l it(x)1 00 ,

the following theorem and corollary follow directly from Theorem 2.7 and Corollary 2.8

respectively thus giving rise to a bound on the relative error i -2(xI.o in x in terms

of the condition number r2 (M. q)IIMIbo and the corresponding relative residual.

2.11 Theorem (Relative error bound for approximate solutions of monotone linear

complementarity problems) Let M be positive semidefinite, let q 0 and let S $ 4. For

each x in R ' there exists an ±(x) in S such that

1Li --"7llc < r 2 (M, q)IIMlioIoH(r(Mx +- q), Mx - q, -X)+112
(2.9)

-+ (X(Mx + q) t oO(-Mxr - q, _X)+ 110) /2] 111(_q)+ 11.

where r2 (M, q) is defined by (2.5) and ro by (2.7).

8
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2.12 Corollary (Relative error bound for approximate feasible solutions of monotone

linear complementarity problems) Let M be positive semidefinite, let q 0 0, and let S $?6 0.

For each x in S there exists an I(x) in S such that

(2.10) -X ) <r 2 (M, q)jjMIf o[x(MX + q) + (X(Mz + q)) 1 12]/(-q)+ 1"h± (x)!l110 -

2.13 Remark When the solution set S of (1.1) is bounded, a,, of Theorems 2.7 and

2.11 can be bounded above by a single linear program as follows. S is bounded if and

only if there exists an I > 0 such that tb M! + q > 0 t5]. Hence 15] for any i E S and

t': Mx -.- q it follows that

- tt - itb (I - ±)(tb - 17) =( - ±)M - 0

Consequently

jtDi) min {tb" ii) t +~ it± tbl<i<n".

and from the definition (2.7) of ao we have that

(2.11) o 0= min li, tfl Itb/ min {t }
ES 1<i<n

Hence given a monotone linear complementarity problem (1.1), one can first solve the

linear program

(2.12) max {clMx+q> eE, x >e,, I>e>0}

The maximum e, achieved at (i, e), is positive if and only if S is nonempty and

bounded, in which case 000 is bounded above by itb/ where tb = Mi + q.

We conclude by giving an interesting application of Corollary 2.8 to the dual quadratic

programs

1
(2.13) min - zQz cz subject to Az > b, z >0

2 2

(2.14) max- - zQz +bu subject to -Qz + ATu <c u >0
Z'U 2 -

. . . . . . .. . ... ". -. ' .. o•-... ". . . ... -°....-o°... .° .'P"-'.' . .° ." ' '

. . . .. . . -•. . . . . ....- - . ° = . , .-. . . . . ..•. .o- , o°-o•-o°. . ." . • " . •,
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where Q E R"n is positive semidefinite, A G 'n c E Rn and b Cz R'. If the

point (z, u) E Rn~ m is feasible for both (2.13) and (2.14) then there exists a solution

(2(z, u), fi(z, u)) to the dual pair (2.13)-(2.14) such that

*(2.15) II(z, U) - (2(Z, U), tt(z, U))11I, <- T2 (M, q)[(zQz + cz - bu) +t (zQz + cz - bu)' 2

* where 72 (M, q) is defined by (2.5) and

Note that the linear programming case is included as the special case of Q 0. Again here

the square root term in the error bound (2.15) is essential for its validity.

10
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